

Department of Energy Road Show

Cummins Power Generation

Barry Kreuzer

Energy Solutions Business

Western Regional Manager

Cummins QSV91

Cummins Inc.

- \$6.6 B Sales
- \$ 1.4 B Sales in Power Generation
- World Wide Facilities
 - Over 50 Manufacturing Plants
 - 7 Technical Centers
 - 8 Parts and Distribution Centers
- Sales and Service World Wide
 - Over 500 Distributor Facilities

Four Key Value Propositions

- V1: Power Availability
 - Can be off-grid or on-grid. Will tend to be continuous with generally high utilization rates (above 5,000 hours).
- V2: Power Reliability and Quality
 - Require very high reliability, 99.9999 uptime (5 or 6 "9's").
 - Experience frequent problems with utility.
- V3: Power Price Insurance and Hedging
 - Provide a hedge against very high peaking prices
 - Negotiate an interruptible power contract
- V4: Energy Optimization
 - The value proposition focuses on the sale of MP applications that optimize the client's total energy needs and bill.
 - Most often a cogeneration application.

World MP Forecast by Region & Fuel Type

Gas Gains in Mid Power

MP Forecast: Gas Gains in Percentage Share

World MP Forecast by Region & Project Size

Worldwide, projects below 10 MW will account for 57% of the 2-30 MW project size.

Typical Daytime Operation - Commercial/Industrial Load Profile

Typical Daytime Operation - Commercial/Industrial

Load Profile & Utility Cost Curve

Optimized Daytime Operation - Commercial/Industrial

Load Profile & Utility Cost Curve

QSV 81 & 91 High Efficiency Lean Burn Genset 12:1, 500 mg/Nm3 Nox, 203 deg F. HT outlet

<u>GENSET</u>	CONTINUOUS RATING	ELECTRICAL EFFICIENCY	HEAT RATE
QSV81G	1100 kW	38.2 %	8,937
QSV91G	1250 kW	38.5 %	8,868
QSV91GB	1750 kW	38.1 %	8,955
QSV91GB	2000 kW	38.1%	8,955

Gas Turbines

Electrical efficiency %Overall efficiency %Reciprocating gas engine36-4280-90Gas turbine18-3080-90Steam turbine7-2075-85

Gas engine advantage

- Higher mechanical efficiency
- Lower installed cost
- Low gas pressure capability
- More suitable for load fluctuation
- No Time de-ration
- No water consumption
 - 250-300 gallons MW/hr
 - 3.5 4 gallon kW/hr
- Lower Noise emission
- Less affected by ambient conditions
 - · temperature & altitude

NOx: 111 PPM / .8 g/bhp/h

CO: 558 PPM

90% Open Loop SCR + OXI CAT

NOx: 12 PPM / .08 g/bhp/h

CO: 51 PPM / .23 g/bhp/h

BACT SCR + OXIDATION CAT.

NOX: 6 PPM / .04 g/bhp/h

CO: 56 PPM / .23 g/bhp/h

1750 GQNB and 1250 GQNA

• Technical Data

Engine

Continuous Duty

Configuration

Bore x Stroke

Capacity

- BMEP

Aspiration

Compression

Efficiency mechanical

- RPM

Cummins QSV91

1250 kWe to 1750 kWe

18 V

180 mm x 200 mm

91 liters

14 Bar to 16 Bar

Turbo / After-cooled

12:1

39.9 % to 40.5

1200 rpm to 1500 rpm

1250 kW Modular System

10' Wide10' High40' Long

IN STOCK!

New Products

Droduct

QSK38G

Froduct	39% electrical efficiency	38% electrical efficiency
QSK45G	700 kW	1050 kW
QSK60G	950 kW	1400 kW

1200rnm

650 kW

efficiency

36.5% electrical

1200rnm

1400GQKA

Technical Data

Engine
Continuous Duty
Configuration
Bore x Stroke
Capacity
BMEP
Aspiration
Compression
Efficiency mechanical
RPM

Cummins QSK60
1400 kWe
16 V
159 mm x 190 mm
60 liters
14 Bar
Turbo / After-cooled
12:1
40 + %
1800 rpm

Cummins & Kawasaki Turbines

Total Cost of Onsite Generation

- Cost of onsite generation is made up of 3 main components
 - Fuel
 - Maintenance
 - Capital

Cost of Generation / Fuel

\$4.00 /mmBTU

12:1 compression, 203 Deg F HT Outlet, High Efficiency Engine

QSV81G 1100 kW 9.83mmBTU/hr \$.0393kW/hr

QSV91G 1250 kW 11.08mmBTU/hr \$.0389kW/hr

QSV91GB 1750kW 15.67mmBTU/hr \$.0394kW/hr

Fuel cost pricing has been converted to HHV

Fuel Cost of Generation / Diesel \$0.95 per gallon

Prime Rating	Engine Size	<u>Gallons /</u>	Cost / kWh
		<u>Hr</u> .	
1825 kW	60 Liter	122.0	\$.0635
1250 kW	50 Liter	87.3	\$.0663
900 kW	30 Liter	62.1	\$.0655

Typical LCC Make Up 8000 Hrs/Yr 10 Yrs

Typical LCC Make Up 3400 Hrs/Yr 10 Yrs

- Scheduled & Unscheduled Maintenance Agreements.
 - ➤ Available 1 10 years of project for Cummins scope of supply
 - Genset, switchgear, cogen & SCR.
 - **Cost range \$.009 .013 kW/hr**

Unscheduled Maintenance

➢ Provisions:- from 15% to 25% of the amount of the Total Scheduled Maintenance Cost. Facility included in LCC model at approximately 15%

When is LCC Important:

What are the Key Drivers:

Cost of Capital

- \$800.00 \$1,500 / kW
- 6.5%
- full pay out lease, no residual value taken
- 5 years \$0.0237 \$0.0444 / kW installed
- 10 years \$0.0137 \$0.0257 / kW installed

Total Cost of Generation

• Fuel \$0.039 kW/h

• LCC \$0.009 - \$0.013 kW/h

• Capital \$0.0137 - \$0.0444 kW/h

• Total \$0.0617 - \$0.0964

RULE OF THUMB

QSV81G produces approx <u>0.8</u> ton /hr of 338^F steam at 116 psig.

QSV91G produces approx one ton /hr of 338 ^F steam at 116 psig

APPLICATION - HOSPITAL

2 units QSV91G 1200RPM

Electrical Output 2.47 MWe

Thermal
Output
3,400 kWth

St Catharines Hospital, Ontario, Canada

APPLICATIONS - AGRICULTURAL

6 units QSV91G

Electrical Output 9.1MWe

Thermal
Output
10,500 kWth

Uses CO₂ to enhance growing cycle

Nedalo, Hernhill, Kent, UK

21 MW Atmos

Generator Line Up

16 MW Senegal Base Power Plant

- 5 monthsfromcontract tooperation
- 3 yearcontract foroperationandmaintenance

McMinnville Electric System

Eleven 2 MW DQK Gensets

- At a Glance:
- Where: McMinnville Electric System in

McMinnville, Tennessee

• What: 11 x 2 MW dieselfueled generator sets, featuring

PowerCommand pre-integrated controls

• **Purpose**: Peaking power and emergency backup power for the

Tennessee Valley Authority (TVA)..

North American Installations

- Vandbro Corp- Asphalt plant, Staten Island
 - 1.25 MW Cogen, 4,000 hrs/year
- Museum of Science & Industry, Chicago
 - 1.75 MW Cogen, 3,400 hrs/yr
- St. Catherines Hospital, Ontario
 - 2.5 MW Cogen System, 7000 hrs/yr
- St. Charles Hospital, Toledo
 - − 1.1 MW Cogen System, 3000 hrs/yr
- A.E. Staley/Atmos, Tennessee
 - 21 MW Peaking, Max 1,200 hrs/yr

North America Installations

- Gas Technology Institute, Chicago
 - 1.1 MW Cogen absorption, 3,400 hrs/yr.
 - Comparison test site with Cat 3516
- Equity Office Partners, Chicago
 - 1.1 MW, Cogen, 3,400 hrs/yr
- West Lincoln Memorial Hospital, Ontario
 - .66 MW cogen system, 4000 hrs/yr
- New Orders
 - Dupage County Water Treatment, 1.1 MW
 - 2 High Schools 2 @ 1750 kW